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Ubiquitous CFT’s

The study of asymptotic behaviors plays a central role in QFT, especially IR fixed points (universality)
I All examples where the IR behavior is known correspond to conformal invariant fixed points.
I In 4D, if perturbative, a fixed point is a CFT
I If non-perturbative, no formal proof but conformality largely accepted.
I In 2D, scale invariance implies conformal invariance

A large class of physically interesting IR fixed points are:
I non-supersymmetric
I non-perturbative
I small-N

No need to hunt for such a model... write the simplest (non-free) QFT:

1
2

(∂µφ)2 +
1
2
φ2 +

1
4!
φ4, in 2 ≤ D < 4

How do we describe the properties of the Wilson-Fisher fixed point, say in 3D?

Is it stable? (namely, are there relevant operators singlet under global symmetries?)
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Goal of conformal bootstrap

To develop a systematic and rigorous method to study the properties of conformal invariant fixed points
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What is a CFT?

Conformal Algebra

In D dimensions : Mµν ,Pρ,D ,Kσ ' SO(D|2)

Irreducible representations of Conformal Algebra:
I infinite towers of states (or operators) with increasing, equally spaced, dimensions.
I Lower state is called Primary:

O∆,` :
∆ dimension

` spin

I Other states, called Descendants, obtained applying Pµ
I representation totally characterized by scaling dimension and spin of the primary

Completeness of the Hilbert space of states⇔ OPE:

O∆1 (x)×O∆2 (y) =
1

|x− y|∆1+∆2

∑
O

C12O
(
Cµ1...µ` (y)Oµ1...µ`

∆ (y) + descendants
)︸ ︷︷ ︸

fixed by conformal symmetry

C12O are called OPE coefficients
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What is a CFT?

The power of conformal invariance

Two point function of primaries: completely fixed

〈Oi(x1)Oj(x2)〉 =
δij

x2∆i
12

x12 ≡ |x1 − x2| ∆i = [Oi]

Three point function of primaries: fixed modulo a constant

〈O1O2O3〉 ∝


C123 (〈O3O3〉+ descendants )︸ ︷︷ ︸

fixed by conformal symmetry

ifO3 ∈ O1 ×O2

0 otherwise
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What is a CFT?

Four point functions

Use OPE to reduce higher point functions to smaller ones

〈O(x1)O(x2)O(x3)O(x4)〉 ∼
∑
O

1 Introduction and formulation of the problem

Our knowledge about non-supersymmetric Conformal Field Theories (CFTs) in four dimensions
(4D) is still quite incomplete. Su�ces it to say that not a single nontrivial example is known which
would be solvable to the same extent as, say, the 2D Ising model. However, we do not doubt that
CFTs must be ubiquitous. For example, non-supersymmetric gauge theories with Nc colors and
Nf flavors are widely believed to have “conformal windows” in which the theory has a conformal
fixed point in the IR, with evidence from large Nc analysis [1], supersymmetric analogues [2], and
lattice simulations [3]. Since these fixed points are typically strongly coupled, we do not have
much control over them. In this situation particularly important are general, model-independent
properties.

One example of such a property is the famous unitarity bound [4] on the dimension � of a
spin l conformal primary operator O�,l :1

� � 1 (l = 0) , (1.1)

� � l + 2 (l � 1) .

These bounds are derived by imposing that the two point function hOOi have a positive spectral
density.

As is well known, 3-point functions in CFT are fixed by conformal symmetry up to a few arbi-
trary constants (Operator Product Expansion (OPE) coe�cients). The next nontrivial constraint
thus appears at the 4-point function level, and is known as the conformal bootstrap equation. It
says that OPE applied in direct and crossed channel should give the same result (see Fig. 1).

The bootstrap equation goes back to the early days of CFT [5]. However, until recently, not
much useful general information has been extracted from it2. All spins and dimensions can apriori
enter the bootstrap on equal footing, and this seems to lead to unsurmountable di�culties.
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Figure 1: The conformal bootstrap equation. The thick red line denotes a conformal
block, summing up exchanges of a primary operator O and all its descendants.

Recently, however, tangible progress in the analysis of bootstrap equations was achieved in
[7]. Namely, it was found that, in unitary theories, the functions entering the bootstrap equations

1Here we quote only the case of symmetric traceless tensor operators.
2Except in 2D, in theories with finitely many primary fields and in the Liouville theory [6]. We will comment

on the 2D case in Sections 4.1 and 5 below.
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1

If OPE is associative, the two expansion must give the same result!
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What is a CFT?

Definition of a CFT:

A Conformal Field Theory is an infinite set of primary operatorsO∆,` and OPE coefficients Cijk that satisfy
crossing symmetry for all set of four-point functions.
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Conformal bootstrap

Four point functions (more in details)

Recalling the OPE

O(x1)×O(x2) =
∑
O′

CO′

x2d−∆
12

(O′∆,` + descendants) d = [O]

Then

〈O(x1)O(x2)O(x3)O(x4)〉 =
u−d

(x2d
13x2d

24)

∑
O′
∆,l

C2
O′

(
〈O′∆,`O′∆,`〉+ descendants

)
︸ ︷︷ ︸

function of u, v only by conformal symmetry

u =
x2

12x2
34

x2
13x2

24
v =

x2
14x2

23

x2
13x2

24

Conformal Blocks:

g∆,l(u, v) ≡ 〈O′∆,`O′∆,`〉+ descendants

They sum up the contribution of an entire representation
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Conformal bootstrap

The Bootstrap program

Crossing Symmetry

〈O(x1)O(x2)O(x3)O(x4)〉 vs 〈O(x1)O(x2)O(x3)O(x4)

They must produce the same result:

u−d

1 +
∑
∆,l

C2
∆,`g∆,`(u, v)

 = v−d

1 +
∑
∆,`

C2
∆,`g∆,l(v, u)

 d = [O]

Crossing symmetry⇒ Sum Rule:

∑
∆,l

C2
∆,l

vdg∆,`(u, v)− udg∆,`(v, u)

ud − vd︸ ︷︷ ︸
Fd,∆,`

= 1

[Rattazzi,Rychkov,Tonni, AV]

Breakthrough in the field in 2000:
first computation of g∆,l in D=2,4

At present g∆,` are known
numerically in any dimension

Great efforts to extend to non scalar
four point functions
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Conformal bootstrap

Geometric interpretation

∑
∆,`

C2
∆,l



Fd,∆,`
∂uFd,∆,`
∂vFd,∆,`
·
·
·

∂n
u∂

m
v Fd,∆,`


=



1
0
0
·
·
·
·


Fd,∆,`: combinations of conformal blocks

n + m ≤ Nmax

1

venerdì 2 marzo 12

I All possible sums of vectors with positive
coefficients define a cone

I Crossing symmetry satisfied⇔ 1 is inside the
cone

I Restrictions on the spectrum make the cone
narrower

I A cone too narrow can’t satisfy crossing
symmetry: inconsistent spectrum
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Conformal bootstrap

Geometric interpretation

How can we distinguish feasible spectra from unfeasible ones?

1 1

VS

venerdì 2 marzo 12

For unfeasible spectra it exists a plane separating the cone and the vector.

More formally...

Look for a Linear functional

Λ[Fd,∆,`] ≡
Nmax∑
n,m

λmn∂
n∂mFd,∆,`

such that
Λ[Fd,∆,`] > 0 and Λ[1] < 0
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Conformal bootstrap

2D Example

Consider the OPE of scalar field in 2D CFT φ with itself:

φ× φ ∼ 1 + φ2 + higher dimensional operators,

+higher spin operators ∆φ = [φ], ∆φ2 = [φ2]

What values of (∆φ,∆φ2 ) are consistent with crossing symmetry?
(black points are minimal models, exactly known CFT’s)
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An application: 3D ising model

3D Ising Model

Some notation: σ × σ ∼ 1 + ε+ ε′ + ....

Allowed regions in ∆σ , ∆ε plane ?

0.50 0.55 0.60 0.65 0.70 0.75 0.80
DΣ1.0

1.2

1.4

1.6

1.8

DΕ

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]

0.516 0.517 0.518 0.519 0.520
DΣ1.400

1.405

1.410

1.415

1.420
DΕ

Already excluding part of ε−expansion prediction
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An application: 3D ising model

Going beyond: multiple correlators

So far we used a single four point function :〈σσσσ〉.

Let us include additional correlators: 〈εεεε〉, 〈σεσε〉.

Must consider all mixed OPE’s :

σ × σ ∼ 1 + ε+ ε′ + .... Z2 − even

σ × ε ∼ σ + σ′ + .... Z2 − odd

ε× ε ∼ 1 + ε+ ε′ + .... Z2 − even

〈σ(x1)ε(x2)σ(x3)ε(x4)〉 ∼
∑
O∆,`

λ2
σεO g̃∆,`(u, v)

〈σ(x1)ε(x2)σ(x3)ε(x4)〉 ∼
∑
O∆,`

λσσOλεεOg∆,`(u, v)

Second expansion is not a sum with positive coefficients: geometrical argument can’t go through, but it can
be generalized.
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An application: 3D ising model

Study region allowed by multi-correlators crossing symmetry under the unique assumption that σ and ε are
the only two relevant scalar operators in theory.
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An application: 3D ising model

3D Ising Model: multiple correlators

Some notation:

σ × σ ∼ 1 + ε+ ε′ + .... Z2 − even

σ × ε ∼ σ + σ′ + .... Z2 − odd

ε× ε ∼ 1 + ε+ ε′ + .... Z2 − even

Use < σσσσ >,< σσεε >,< εεεε >

comparison to Monte Carlo

Monte Carlo

∆σ

∆ϵ

0.51808 0.5181 0.51812 0.51814 0.51816 0.51818

1.4124

1.4125

1.4126

1.4127

1.4128

1.4129

1.413

1.4131

Figure 3: Comparison between the allowed region for the 3d Ising CFT using SDPB with
Λ = 43 (blue) and Monte Carlo determinations of critical exponents (dashed rectangle) [67].
The size of the Monte Carlo rectangle is set by statistical and systematic errors associated
with the simulation. By contrast, the blue region is a rigorous bound with sharp edges.

different algorithms, like Second Order Conic Programming (SOCP), cutting plane methods,
or constrained nonlinear optimization may also be applicable.

The revival initiated in [1] is still young, and the technology (both analytical and
numerical) is evolving rapidly. Current techniques are likely not maximally efficient, and it
will be important to consider other methods, from new algorithms and optimization tools
to conceptually different approaches. We are optimistic that much more will be possible.
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Figure 6: Allowed values of (∆σ,∆ϵ) in a Z2-symmetric CFT3 containing only two relevant
scalars. The blue region is our rigorous bound from figure 5, computed at nmax = 10, 14.
The dark grey rectangle is the Monte-Carlo prediction of [35]. The light grey rectangle is the
prediction of the c-minimization conjecture [22], using single-correlator results at nmax = 21.
There may be additional disconnected regions for ∆σ ! 0.54, as in figure 2, but we have not
computed them here.

While the conformal bootstrap involving identical external operators has already shown
itself to be surprisingly constraining, our results demonstrate that the larger system of
mixed constraints, combined with mild assumptions about gaps, may be sufficiently powerful
to uniquely locate isolated CFTs. Indeed, if one previously did not know about the 3D
Ising CFT, one would have discovered it following the general logic of this paper! There
may be many more isolated CFTs waiting to be discovered, perhaps theories without
Lagrangian descriptions or supersymmetry. The space of such theories can be mapped
out in a systematic way using the conformal bootstrap, by inputting gaps and searching for
small closed allowed regions in the space of operator dimensions. There is much exploration
to be done!
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using SDPB with the system of correlators ⟨σσσσ⟩, ⟨σσϵϵ⟩, and ⟨ϵϵϵϵ⟩. The blue regions
correspond to Λ = 19, 27, 35, 43, in decreasing order of size. The larger black rectangle shows
the current most precise Monte Carlo determinations of critical exponents in the 3d Ising
CFT [67]. The smaller black rectangle shows the estimate for (∆σ,∆ϵ) using c-minimization
at Λ = 41 for the single correlator ⟨σσσσ⟩ [5].

In figure 1, we plot the allowed regions for different numbers of derivatives labeled by
Λ = 19, 27, 35, 43,9 corresponding to functionals α⃗ of dimension 275, 525, 855, and 1265,
respectively.10 We focus on (∆σ, ∆ϵ) near the 3d Ising CFT, leaving wider exploration to
the future. The allowed region is an island that shrinks rapidly with increasing Λ.11 The
largest island, corresponding to Λ = 19 is the same as the allowed region in figure 5 of [9].
We can estimate the point towards which the islands shrink as follows. Let (aΛ, bΛ) be the
bottom-left point of the Λ-allowed island, and similarly let (cΛ, dΛ) be the top-right point.
Define

Ex(r) = stddevΛ∈{19,27,35,43}(raΛ + (1 − r)cΛ),

Ey(r) = stddevΛ∈{19,27,35,43}(rbΛ + (1 − r)dΛ), (3.15)

9nmax = 10, 14, 18, 22 in the notation of [9].
10A performance analysis for different values of Λ is given in appendix B.2.
11Each allowed region plotted in this work was computed by testing a grid of points and fitting curves to

the boundary between allowed and disallowed gridpoints. The raw gridpoint data is available on request.
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Figure 3: Comparison between the allowed region for the 3d Ising CFT using SDPB with
Λ = 43 (blue) and Monte Carlo determinations of critical exponents (dashed rectangle) [67].
The size of the Monte Carlo rectangle is set by statistical and systematic errors associated
with the simulation. By contrast, the blue region is a rigorous bound with sharp edges.

different algorithms, like Second Order Conic Programming (SOCP), cutting plane methods,
or constrained nonlinear optimization may also be applicable.

The revival initiated in [1] is still young, and the technology (both analytical and
numerical) is evolving rapidly. Current techniques are likely not maximally efficient, and it
will be important to consider other methods, from new algorithms and optimization tools
to conceptually different approaches. We are optimistic that much more will be possible.
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An application: 3D ising model

3D Ising Model: multiple correlators
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An application: 3D ising model

Summary

spin & Z2 name ∆ OPE coefficient
` = 0, Z2 = − σ 0.518145(6)
` = 0, Z2 = + ε 1.41264(6) f 2

σσε = 1.10636(9)
ε′ 3.8303(18) f 2

σσε′ = 0.002810(6)

` = 2, Z2 = + T 3 cT/cfree
T = 0.946534(11)

T′ 5.500(15) f 2
σσT′ = 2.97(2)× 10−4

I The 3D Ising model is a CFT with only two relevant operators: σ and ε
I The 3D Ising model lies on the boundary of the region allowed by single correlator crossing symmetry
I Operator dimensions give the most precise determination of ν, η, ω critical exponents to date

∆σ = 1/2 + η/2 ∆ε = 3− 1/ν ∆ε′ = 3 + ω ∆ε′′ = 3 + ω2 ∆ε′′′ = 3 + ω3

I First precise estimate of OPE coefficients and central charge
I Additional operators and coefficients (with larger errorbars) can be extracted
I What next? multiple correlators analysis can pinpoint the location of O(N)-models [F. Kos, D.Poland, D.

Simmons-Duffin, AV, in progress]
I Study correlation functions containing conserved currents [ AV, in progress ; M Costa & al, in progress]
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A conjecture and supporting evidences

BACKUP SLIDES
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A conjecture and supporting evidences

A proliferation of kinks

Compare bounds on the anomalous dimensions for various space-time dimensions D:

γσ = ∆σ −
(D− 2)

2
γε = ∆ε − (D− 2)
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[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]
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A conjecture and supporting evidences

Epsilon Expansion: D = 4− ε

γσ =
(N + 2)ε2

4(N + 8)2
+ O(ε3)

γε =
(N + 2)ε

N + 8
+

(N + 2)(13N + 44)ε2

2(N + 8)3
+ O(ε3)

1 ´ 10-4 2 ´ 10-4 5 ´ 10-4 0.001 0.002 0.005 0.010 0.020
0.02

0.05

0.10

0.20

0.50

ΓΣ

Γ Ε

Comparison with epsilon-expansion at 2-3 loops

I Kinks from previous slide
I O(ε2)

I O(ε3)
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A conjecture and supporting evidences

Epsilon Expansion: D = 4− ε
A conjecture and supporting evidences

Epsilon Expansion: D = 4 � ✏

0.0 0.5 1.0 1.5 2.0
0.

0.02

0.04
0.06
0.08
0.1
0.12

4-D

g s

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

4-D

g e
Our prediction (points)

Borel resumed series: central values and errors
(bands)
[Guillou,Zinn-Justin]

Alessandro Vichi (LBNL) Precise Critical Exponents from Conformal Bootstrap 17 / 22

I Our prediction (points)
I Borel resumed series: central values and errors

(bands)
[Guillou,Zinn-Justin]
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A conjecture and supporting evidences

Multiple correlators

When using multiple correlators the search for linear functionals must be modified to accommodate non
squared OPE coefficients:

Single correlator:∑
O∆,`

λ2
σσOF∆σ,∆,` = 1

Look for functional

Λ[F∆σ,∆,`] ≡
Nmax∑
n,m

λmn∂
n∂mF∆σ,∆,`

such that:

Λ[F∆σ,∆,`] > 0 and Λ[1] < 0

Multi correlators:∑
O∆,`

~λT
OM∆,`

~λO +
∑
O′

∆,`

λ2
σεO′ F̃∆,` = 0

M∆,` =

(
0 1

2 F∆σ,∆,`
1
2 F∆ε,∆,` 0

)
, ~λO =

(
λσσO
λεεO

)
Look for a functional acting on matrices

Λ[M∆,`] ≡
Nmax∑
n,m

λmn∂
n∂mM∆,`

such that (semidefinite positiveness condition)

Λ[M∆,`] � 0 and Λ[M0,0] < 0
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A conjecture and supporting evidences

Solving Ising 3D: boundary spectrum

I On the boundary of the allowed region the solution to crossing is unique: the whole spectrum and OPE
coefficients can be reconstructed.

I Assuming to leave on the upper boundary of the allowed island (note that increasing the numerical
power it is approximatively stable)

Recall OPE: σ × σ ∼ 1 + ε+ ε′ + ... (`=0)
+ Tµν + T′µν + ..... (`=2)
+ ..... (` >2)

Prediction for T′:

∆T′ ∈ [5.505, 5.515]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]
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A conjecture and supporting evidences

Solving Ising 3D: boundary spectrum

I On the boundary of the allowed region the solution to crossing is unique: the whole spectrum and OPE
coefficients can be reconstructed.

I Assuming to leave on the upper boundary of the allowed island (note that increasing the numerical
power it is approximatively stable)

Recall OPE: σ × σ ∼ 1 + ε+ ε′ + ... (`=0)
+ Tµν + T′µν + ..... (`=2)
+ ..... (` >2)

Prediction for central charge:

c/cfree ∈ [0.946528, 0.946538]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]

Prediction for T′:

∆T′ ∈ [5.505, 5.515]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators
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A conjecture and supporting evidences

Solving Ising 3D: boundary spectrum

I On the boundary of the allowed region the solution to crossing is unique: the whole spectrum and OPE
coefficients can be reconstructed.

I Assuming to leave on the upper boundary of the allowed island (note that increasing the numerical
power it is approximatively stable)

Recall OPE: σ × σ ∼ 1 + ε+ ε′ + ... (`=0)
+ Tµν + T′µν + ..... (`=2)
+ ..... (` >2)

Prediction for ε′:

∆ε′ ∈ [3.829, 3.831]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]

Prediction for T′:

∆T′ ∈ [5.505, 5.515]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators
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+ Tµν + T′µν + ..... (`=2)
+ ..... (` >2)

Prediction for T′:

∆T′ ∈ [5.505, 5.515]

red rectangle : assuming Ising 3D has minimal central charge

gray rectangle: multiple correlators

[El-Showk,Paulos,Poland,Rychkov,Simmons-Duffin, AV]

Alessandro Vichi (CERN (former LBNL)) Conformal Bootstrap: a dream come true 15 / 15


	What is a CFT?
	Conformal bootstrap
	An application: 3D ising model

